SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY: PUTTUR (AUTONOMOUS)
Siddharth Nagar, Narayanavanam Road - 517583
OUESTION BANK (DESCRIPTIVE)
Subject with Code: Linear Algebra \& Calculus (23HS0830) Course \& Branch: B.Tech - Common to All
Year \& Sem: I-B.Tech \& I-Sem
Regulation: R23

UNIT -I MATRICES

1	a) Define rank of the matrix.	[L1][CO1]	[2M]
	b) Reduce the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3\end{array}\right]$ into Echelon form and find its rank?	[L3][CO1]	[2M]
	c) State Cauchy-Binet formulae.	[L1][CO1]	[2M]
	d) What is the Consistency and Inconsistency of system of linear equations?	[L1][CO1]	[2M]
	e) Solve by Gauss-Seidel method $x-2 y=-3 ; 2 x+25 y=15$. [Only two iterations]	[L3][CO1]	[2M]
2	a) Reduce the matrix $\mathrm{A}=\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5\end{array}\right]$ into Echelon form and find its rank?	[L3][CO1]	[5M]
	b) Reduce the matrix A to normal form and hence find its rank $\mathrm{A}=\left[\begin{array}{llll}2 & 1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6\end{array}\right]$	[L3][CO1]	[5M]
3	a) If $\mathrm{A}=\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 4 & 2 \\ 0 & 1 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}1 & 6 & 0 \\ 3 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$ Verify that $\|\boldsymbol{A B}\|=\|A\| .\|B\|$	[L2][CO1]	[5M]
	b) Find whether the following equations are consistent if so solve them $x+y+2 z=4 ; 2 x-y+3 z=9 ; 3 x-y-z=2$.	[L3][CO1]	[5M]
4	a) Reduce the matrix $\mathrm{A}=\left[\begin{array}{cccc}-\mathbf{2} & -\mathbf{1} & -\mathbf{3} & -\mathbf{1} \\ \mathbf{1} & \mathbf{2} & \mathbf{3} & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & -\mathbf{1}\end{array}\right]$ into Echelon form and find its rank?	[L3][CO1]	[5M]
	b) Solve completely the system of equations $4 x+2 y+z+3 w=0 ; 6 x+3 y+4 z+7 w=0 ; 2 x+y+w=0$	[L3][CO1]	[5M]
5	Find the inverse of the matrix $\mathrm{A}=\left[\begin{array}{rccr}-1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1\end{array}\right]$ using Gauss-Jordan method.	[L3][CO1]	[10M]
6	a) Solve completely the system of equations $x+2 y+3 z=0,3 x+4 y+4 z=0,7 x+10 y+12 z=0$	[L3][CO1]	[5M]
	b) Show that the equations $x+y+z=4 ; 2 x+5 y-2 z=3 ; x+7 y-7 z=5$ are not consistent.	[L2][CO1]	[5M]
7	Show that the only real number λ for which the system $x+2 y+3 z=\lambda \mathrm{x} ; 3 x+y+2 z=\lambda \mathrm{y} ; 2 x+3 y+z=\lambda \mathrm{z}$ has non-zero solution is 6 . and solve them when $\lambda=6$.	[L2][CO1]	[10M]
8	Solve the equations $3 x+y+2 z=3 ; 2 x-3 y-z=-3 ; x+2 y+z=4$ Using Gauss elimination method.	[L3][CO1]	[10M]

9	Express the following system in matrix form and solve by Gauss elimination method. $2 x_{1}+x_{2}+2 x_{3}+x_{4}=6 ; \quad 6 x_{1}-6 x_{2}+6 x_{3}+12 x_{4}=36 ;$ $4 x_{1}+3 x_{2}+3 x_{3}-3 x_{4}=-1 ; 2 x_{1}+2 x_{2}-x_{3}+x_{4}=10$.	[L2][CO1]	[10M]
10	Solve the following system of equations by Gauss-Jacobi Iteration method $27 x+6 y-z=85 ; x+y+54 z=110 ; 6 x+15 y+2 z=72$	[L3][CO1]	[10M]
11	Solve the following system of equations by Gauss-Siedel Iteration method $4 x+2 y+z=14 ; x+5 y-z=10 ; x+y+8 z=20 .$	[L3][CO1]	[10M]

UNIT -II

EIGEN VALUES, EIGEN VECTORS AND ORTHOGONAL TRANSFORMATION

1	a) Define Eigen values and Eigen vectors of a matrix.	[L1][CO2]	[2M]
	b) Find the Eigne values of the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3\end{array}\right]$	[L3][CO2]	[2M]
	c) State Cayley Hamilton theorem	[L1][CO2]	[2M]
	d) Convert the symmetric matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 1\end{array}\right]$ into the quadratic form.	[L2][CO2]	[2M]
	e) Find the symmetric matrix corresponding to the quadratic form $a x^{2}+2 h x y+b y^{2}$.	[L3][CO2]	[2M]
2	a) For the matrix $\mathrm{A}=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{2} & -\mathbf{3} \\ \mathbf{0} & \mathbf{3} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & -\mathbf{2}\end{array}\right]$ find the Eigen values of $\mathbf{3} \boldsymbol{A}^{\mathbf{3}}+\mathbf{5} \boldsymbol{A}^{\mathbf{2}}-\mathbf{6} \boldsymbol{A}+\mathbf{2 I}$.	[L3][CO2]	[5M]
	b) Determine the Eigen values of A^{-1} where $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$	[L3][CO2]	[5M]
3	Find the Eigen values and corresponding Eigen vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.	[L3][CO2]	[10M]
4	Find the Eigen values and corresponding Eigen vectors of the matrix A and also find the eigen values of A^{-1} where $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.	[L3][CO2]	[10M]
5	Determine the modal matrix P of $\boldsymbol{A}=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & \mathbf{1} & -6 \\ -\mathbf{1} & -2 & \mathbf{0}\end{array}\right]$. Verify that $\boldsymbol{P}^{\mathbf{- 1}} \boldsymbol{A P}$ is a diagonal matrix.	[L2][CO2]	[10M]
6	a) Verify Cayley Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$.	[L2][CO2]	[5M]
	b) Show that the matrix $A=\left[\begin{array}{ccc}8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ satisfies its characteristic equation.	[L2][CO2]	[5M]
7	Verify Cayley Hamilton theorem for $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ and find A^{-1} and A^{4} using Cayley Hamiltion theorem.	[L3][CO2]	[10M]
8	Show that the matrix $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2\end{array}\right]$ satisfies its characteristic equation. Hence find $\boldsymbol{A}^{\boldsymbol{- 1}}$.	[L2][CO2]	[10M]
9	a) State the nature of the Quadratic form $2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}$.	[L1][CO2]	[5M]

	b) Identify the nature of the Quadratic form $-\mathbf{3} \boldsymbol{x}_{\mathbf{1}}{ }^{2}-\mathbf{3} \boldsymbol{x}_{\mathbf{2}}{ }^{2}-\mathbf{3} \boldsymbol{x}_{\mathbf{3}}{ }^{2}-\mathbf{2} \boldsymbol{x}_{\mathbf{1}} \boldsymbol{x}_{\mathbf{2}}-$ $\mathbf{2} \boldsymbol{x}_{1} \boldsymbol{x}_{\mathbf{3}}+\mathbf{2 \boldsymbol { x } _ { 2 } \boldsymbol { x } _ { \mathbf { 3 } } .}$	$[\mathrm{L} 2][\mathrm{CO} 2]$	$[\mathbf{5 M}]$
$\mathbf{1 0}$	Reduce the Quadratic form $3 x_{1}{ }^{2}+3 x_{2}{ }^{2}+3 x_{3}{ }^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$ into canonical form by Orthogonal transformation and Find the Rank, Index and Signature of the canonical form.	$[\mathrm{L} 3][\mathrm{CO} 2]$	$[\mathbf{1 0 M}]$
$\mathbf{1 1}$	Reduce the Quadratic form $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 x z-2 y z$ into the canonical form by Orthogonal transformation and discuss its nature.	$[\mathrm{L} 3][\mathrm{CO} 2]$	$[\mathbf{1 0 M}]$

UNIT -III CALCULUS

1	a) State Rolle's theorem.	[L1][CO3]	[2M]
	b) Verify the Rolle's Theorem can be applied to the function $\mathrm{f}(\mathrm{x})=\tan x$ in $[0, \pi]$	[L2][CO3]	[2M]
	c) State Lagrange's mean value theorem.	[L1][CO3]	[2M]
	d) State Cauchy's mean value theorem.	[L1][CO3]	[2M]
	e) Expand Taylor's series of the function $\mathrm{f}(\mathrm{x})$ in powers of ($\mathrm{x}-\mathrm{a})$.	[L2][CO4]	[2M]
2	a) Verify Rolle's Theorem for the function $\mathrm{f}(\mathrm{x})=\frac{\sin x}{e^{x}}$ in $[\mathbf{0}, \boldsymbol{\pi}]$	[L2][CO3]	[5M]
	b) Verify Lagrange's mean value theorem for $\mathrm{f}(\mathrm{x})=\log _{e} x$ in $[1, e]$	[L2][CO3]	[5M]
3	a) Verify Rolle's Theorem for the function $\mathrm{f}(\mathrm{x})=\log \left[\frac{x^{2}+a b}{x(a+b)}\right]$ in $[a, b] ; \mathrm{a}, \mathrm{b}>0$	[L2][CO3]	[5M]
	b) Test whether the Lagrange's Mean value theorem holds $\mathrm{f}(\mathrm{x})=x^{3}-x^{2}-5 x+3$ in $[0,4]$ and if so find approximate value of c .	[L4][CO3]	[5M]
4	a) Verify Rolle's theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}+3) e^{-\frac{x}{2}}$ in $[-3,0]$	[L2][CO3]	[5M]
	b) Verify Cauchy's mean value theorem for $\mathrm{f}(\mathrm{x})=e^{x}$ and $\mathrm{g}(\mathrm{x})=e^{-x}$ in [a, b].	[L2][CO3]	[5M]
5	a) Show that for any $\mathbf{x}>\mathbf{0}, \mathbf{1}+\mathbf{x}<\boldsymbol{e}^{\boldsymbol{x}}<\mathbf{1}+\mathbf{x} \boldsymbol{e}^{\boldsymbol{x}}$ using Lagrange's mean value theorem.		
	b) Verify Cauchy's Mean value theorem for $f(x)=x^{3}$ and $g(x)=x^{2}$ in [1,2]	[L2][CO3]	[5M]
6	a) Prove that $\frac{\pi}{3}-\frac{1}{5 \sqrt{3}}>\cos ^{-1}\left(\frac{3}{5}\right)>\frac{\pi}{3}-\frac{1}{8}$ using Lagrange's mean value theorem.	[L2][CO3]	[5M]
	b) Verify Cauchy's mean value theorem for $f(x)=\sin x$; $g(x)=\cos x$ in $\left[0, \frac{\pi}{2}\right]$.	[L2][CO3]	[5M]
7	a) Express the polynomial $2 x^{3}+7 x^{2}+x-6$ in power of $(x-2)$ by Taylor's series.	[L3][CO4]	[5M]
	b) Expand $\sin x$ in powers of $\left(\mathrm{x}-\frac{\pi}{2}\right)$ up to the term containing $\left(\mathrm{x}-\frac{\pi}{2}\right)^{4}$ assigning Taylor's series.	[L2][CO4]	[5M]
8	a) Expand $\log _{s} x$ in powers of ($\mathrm{x}-1$) and hence evaluate $\log 1.1$ correct to 4 decimal places using Taylor's theorem.	[L2][CO4]	[5M]
	b) Obtain the Maclaurin's series expression of the following functions: i) e^{x} ii) $\cos x$ iii) $\sin x$	[L2][CO4]	[5M]
9	Verify Taylor's theorem for $f(x)=(1-x)^{\frac{5}{2}}$ with Lagrange's form of remainder up to 2 terms in the interval $[0,1]$.	[L2][CO4]	[10M]
10	a) Calculate the approximate value of $\sqrt{10}$ correct to 4 decimal places using Taylor's theorem.	[L3][CO4]	[5M]
	p) Show that $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$ by Maclaurin's theorem.	[L2][CO4]	[5M]
11	Using Maclaurin's series expand $\tan x$ up to the fifth power of x and hence find the series for $\log (\sec \mathrm{x})$.	[L3][CO4]	[10M]

PARTIAL DIFFERENTIATION AND APPLICATIONS (MULTI VARIABLE CALCULUS)

1	a) Define Continuity of a function of two variables at a point.	[L1][CO5]	[2M]
	b) Evaluate $\lim _{\substack{x \rightarrow 1 \\ y \rightarrow 2}} \frac{2 x^{2} y}{x^{2}+y^{2}+1}$.	[L5][CO5]	[2M]
	c) If $x=u(1-v) ; y=u v$ then prove that $J\left(\frac{x, y}{u, v}\right)=u$	[L2][CO5]	[2M]
	d) State Functional Dependence.	[L1][CO5]	[2M]
	e) Define Extreme value of a function of two variables.	[L1][CO5]	[2M]
2	a) If $U=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, prove that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} U=\frac{-9}{(X+Y+Z)^{2}}$	[L5][CO5]	[5M]
	b) If $u=\tan ^{-1}\left[\frac{2 x y}{x^{2}-y^{2}}\right]$ then Prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$	[L5][CO5]	[5M]
3	a) $u=\sin ^{-1}(x-y)$, where $x=3 t, y=4 t^{3}$, then show that $\frac{d u}{d t}=\frac{3}{\sqrt{1-t^{2}}}$ by total derivative.	[L2][CO5]	[5M]
	b) If $u=f(y-z, z-x, x-y)$ prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$ by using Chain rule.	[L3][CO5]	[5M]
5	Expand $x^{2} y+3 y-2$ in powers of $(x-2)$ and $(y+2)$ up to the term of $3^{\text {rd }}$ degree.	[L2][CO5]	[10M]
6	a) Expand $e^{x} \sin y$ in powers of x and y by Maclaurin series.	[L2][CO5]	[5M]
	b) If $u=x^{2}-2 y ; v=x+y+z, w=x-2 y+3 z$,then find Jacobian $J\left(\frac{u, v, w}{x, y, z}\right)$.	[L1][CO5]	[5M]
7	a) If $\boldsymbol{u}=\frac{x+y}{1-x y}$ and $v=\boldsymbol{t a n}^{-1} x+\tan ^{-1} y$, find $\frac{\partial(u, v)}{\partial(x, y)}$?	[L1][CO5]	[5M]
	b) Verify if $u=2 x-y+3 z, v=2 x-y-z, w=2 x-y+z$ are functionally dependent and if so, find the relation between them.	[L5][CO5]	[5M]
8	Examine the maxima and minima, if any, of the function $f(x)=x^{3} y^{2}(1-x-y)$.	[L4][CO5]	[10M]
9	a) Examine the function for extreme value $f(x, y)=\mathbf{x}^{4}+\mathbf{y}^{\mathbf{4}}-\mathbf{2} \mathbf{x}^{\mathbf{2}}+\mathbf{4 x y}-\mathbf{2} \mathbf{y}^{\mathbf{2}}$; ($\mathrm{x}>0, \mathrm{y}>0$).	[L4][CO5]	[5M]
	b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ given $x+y+z=3 a$.	[L1][CO5]	[5M]
10	a) Find the stationary points of $u(x, y)=\sin x \cdot \sin y \cdot \sin (x+y)$ where $0<x<$ $\pi, 0<y<\pi$ and find the maximum of u .	[L1][CO5]	[5M]
	b) Find the shortest distance from origin to the surface $x y z^{2}=2$.	[L1][CO5]	[5M]
11	a) Find a point on the plane $\mathbf{3 x + 2 y + z - 1 2}=\mathbf{0}$, which is nearest to the origin.	[L1][CO5]	[5M]
	b) Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest and farthest from the point ($3,1,-1$).	[L1][CO5]	[5M]

MULTIPLE INTEGRALS
 (MULTI VARIABLE CALCULUS)

1	a) Evaluate $\int_{0}^{2} \int_{0}^{x} y d y d x$	[L5][CO6]	[2M]
	b) Evaluate $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r d r d \theta$	[L5][CO6]	[2M]
	c) Transform the integral into polar coordinates, $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$.	[L2][CO6]	[2M]
	d) Find the area enclosed by the parabolas $x^{2}=y$ and $y^{2}=x$.	[L1][CO6]	[2M]
	e) Evaluate $I=\int_{0}^{1} \int_{1}^{2} \int_{2}^{3} x y z d x d y d z$.	[L5][CO6]	[2M]
2	a) Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) d x d y$	[L5][CO6]	[5M]
	b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$	[L5][CO6]	[5M]
3	a) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ in the positive quadrant for which $x+y \leq 1$.	[L5][CO6]	[5M]
	b) Evaluate $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$.	[L5][CO6]	[5M]
4	a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d y d x$	[L5][CO6]	[5M]
	b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by converting to polar coordinates.	[L5][CO6]	[5M]
5	a) Show that the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.	[L2][CO6]	[5M]
	b) Evaluate the integral by transforming into polar coordinates $\int_{0}^{a \sqrt{a^{2}-x^{2}}} \int_{0}^{2} y \sqrt{x^{2}+y^{2}} d x d y$	[L3][CO6]	[5M]
6	a) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y$.	[L5][CO6]	[5M]
	b) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.	[L5][CO6]	[5M]
7	Change the order of integration in $I=\int_{0}^{12-x} \int_{x^{2}}(x y) d y d x$ and hence evaluate the same.	[L1][CO6]	[10M]
8	a) By changing order of integration, evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}}$ dydx.	[L3][CO6]	[5M]
	b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$	[L5][CO6]	[5M]
9	a) Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	[L1][CO6]	[5M]
	b) Evaluate $\int_{1}^{e} \int_{1}^{\operatorname{logy}} \int_{1}^{e^{x}} \log z d z d x d y$.	[L5][CO6]	[5M]
10	a) Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.	[L1][CO6]	[5M]
	b) Evaluate $\iiint\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ taken over the volume enclosed by the sphere $x^{2}+y^{2}+z^{2}=1$, by transforming into spherical polar coordinates.	[L5][CO6]	[5M]
11	a) Evaluate the triple integral $\iiint x y^{2} z d x d y d z$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.	[L5][CO6]	[5M]
	b) Calculate the volume of the solid bounded by the planes $x=0, y=0, x+y+z=a \text { and } z=0$	[L1][CO6]	[5M]

Prepared by: Dept. of Mathematics

